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Charge transport in two dimensions provides an ideal laboratory for investigating 
parameter space geometries. The Onsager relations for anisotropic transport in 
a parity-violating external field endow these spaces with a highly nontrivial 
complex (and K/ihler) structure, which can be given a simple geometrical inter- 
pretation. A large class of Coulomb gases exhibiting this structure have a 
generalized Kramers-Wannier symmetry (complexfield duality) which is con- 
tained in the modular group. Knowledge of this symmetry and the degrees of 
freedom encoded in the Coulomb gas appear to be sufficient to determine the 
global phase diagram and the renormalization group fixed-point structure, 
including the critical exponents. This accounts for all the scaling behavior 
observed so far in the quantum Hall system. 
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The quan tum Hall  effect "~ is the p ro to type  example of the novel and inter- 
esting physics which can take place when charge carriers  are effectively 
confined to two dimensions.  The most  exciting possibi l i ty is if these turn 
out  to be anyons,  particles intermediate  between fermions and bosons,  ~2J 
since that  would mean that  we have opened up a vast new category of 
quan tum phenomena  to exper imental  and theoret ical  investigation. Both 
the equi l ibr ium and nonequi l ibr ium ( t ranspor t )  propert ies  of anyonic  
systems are exotic and at present  poor ly  unders tood,  even in the simple 
quan tum Hall  system. It is therefore of pa r amoun t  impor tance  to elucidate 
the structure of the effective quan tum field theory describing the possible 
ground  states and excitat ions of this system. 

So far work on this p rob lem has been restricted to the isotropic  case, 
i.e., to samples whose composi t ion  (on scales much larger than the latt ice 
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spacing) is homogeneous and rotationally invariant in the plane to which 
transport is confined. That discussion should be expanded to include the 
anisotropic case, not only because anisotropic samples are now becoming 
available, but also because they provide valuable information about 
the structure of the effective field theory. The easiest way to see that this 
is the case is by adopting the "phenomenoiogical" approach proposed in 
ref. 3. 

Briefly, the main idea in ref. 3 is that already available scaling data 14'5~ 
suggest that an infinite discrete group is acting on the space of transport 
coefficients, i.e., the conductivities or resistivities. Scaling signals critical 
behavior and therefore gives local information about the phase structure 
and renormalization group (RG) flow on the space of coupling constants 
(RG parameters). Thus, the observed scaling in the magnetoresistance 
tensor at special points in the parameter space, identified as critical points 
at which the charge-carrying states delocalize (thus allowing the conduc- 
tivities to change), provides powerful constraints on any theory which 
aspires to account for the quantum Hall effect. Furthermore, since the 
value of the scaling exponent appears to be the same for all transitions, i.e., 
between any pair of neighboring plateaus, this also sheds light on the 
global structure of the phase and flow diagram. The suggestion is that the 
mere existence of such a "superuniversal" scaling exponent for completely 
distinct phase transitions indicates that there must be a discrete Kramers- 
Wannier-like symmetry connecting the different fixed points. Such a sym- 
metry partitions the parameter space H =  (axy, ax.,.>0) into universality 
classes labeled by the Hall fractions to which they are attached, and also 
automatically enforces the observed "superuniversality" of the delocaliza- 
tion exponent. Keeping also in mind that infrared stable fixed points, i.e., 
attractors of the RG flow, must only appear at fractions (Hall plateaus) 
(p/q, 0), the supply of candidate groups is extremely limited. The simplest 
choice (this is the phenomenological ansatz), which can account for any 
type of fraction, is the modular group. The resulting global phase and flow 
diagram is consistent with all available scaling data. 

In ref. 6 it was argued that these symmetries have a simple physical 
interpretation in a localization theory of anyons. In dirty two-dimensional 
samples we expect almost all charge carriers to be trapped in the potential 
wells provided by the impurities, for almost all values of the external con- 
trol parameters. Typically there is therefore no charge transport. However, 
for exceptional values of the external magnetic field it may happen that the 
localized wave functions spread out just enough to "percolate" through the 
sample, thus allowing charge to slip through, with a corresponding change 
in the transport coefficients. This is a critical phenomenon called the 
delocalization transition. It is the universal character of this percolation 
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transition which is encoded in the discrete global symmetry. The delocal- 
ization exponent is v = 4/3, or close to 7/3 if tunneling corrections should 
be taken into account. 

These results on the location and scaling properties of the delocalization 
fixed points are in agreement with numerical w o r k  (7-9) and experiment, (4'5) 
as well as more recent theoretical considerations based on a mean-field 
anyon picture) 1~ 

This successful global approach to the quantum Hall system can be 
extended to anisotropic magnetotransport, which recently has come within 
experimental reach. I1~ A sample with a two-dimensional electron gas with 
in-plane anisotropy has been made by Stormer et aU  t'-) The structure was 
formed by modulation-doped molecular-beam epitaxy overgrowth on the 
cleaved edge of an AIGaAs compositional superlattice. Low-temperature 
magnetotransport measurements revealed clear quantum Hall character- 
istics. The electron mobility and density in this anisotropic sample are 
similar to the mobility and density in the isotropic sample used in the 
Princeton experiment ~4~ to determine the fixed-point structure for the 
isotropic case, so a determination of the fixed-point characteristics of such 
anisotropic samples should be possible. 

The virtue of generalizing this discussion to the anisotropic case is 
twofold: 

(i) Comparison with experiment. By providing precise predictions it 
expands the range of experiments which should be performed in order to 
gather evidence for or against the scaling hypotheses mentioned above. 

(ii) Comparison with theory. It provides theoretical (geometrical) 
constraints on the structure of the effective quantum field theory which 
presumably is responsible for the stunning and unusual scaling behavior 
observed in the quantum Hall system. 

The value of (i) needs no further comment, and while the formulation 
of the generalization is simple in the language of (differential) geometry 
(tensors), it is not obvious. The value, and especially the implementation, 
of (ii) may be less obvious. It is clear that any theory aspiring to account 
for all universal properties of the quantum Hall system must include aniso- 
tropy in a natural and elegant way. This will be the case if the coupling 
constants of the effective field theory transform as a rank-two tensor which 
is simply related to the transport coefficients. Due to the presence of the 
antisymmetric Hall conductivity the geometrical structure of such a theory 
cannot be conventional (for instance, no ordinary sigma model will suffice). 
The additional requirement (ansatz) of modular parameter space symmetry 
(motivated by its success in the isotropic case), which is similar to but 
distinct from the parameter space transformations induced by the coordinate 
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transformations discussed below, further complicates the construction of 
such an effective theory. These symmetries are disentangled below in order 
to clarify the geometrical structure which we believe must be encoded in 
the effective field theory of the quantum Hall system. 

The virtue of the "phenomenological" procedure should now be clear: 
if, as appears to be the case for the isotropic data mentioned above, the 
anisotropic scaling data confirm the predictions made here, then we will 
have a very strong constraint on the underlying field theory. It should 
reduce at large scales, and in the static limit, to an effective model invariant 
under an infinite discrete group acting on the parameter space, and that is 
presumably not a property of very many theories. It is, for example, not at 
all obvious that a localization theory of anyons (which presumably can 
be encoded in some kind of Chern-Simons field theory) will have this 
property, t6) 

To see how we are led to a particular class of models from a macro- 
scopic point of view, consider first the isotropic case. The Onsager relations 
and rotational symmetry of the isotropic sample force the conductivity 
tensor to be a complex number2: 

O ~. v 

C ..... ~ ~176176 , -- ox,. " 1 . . . .  

because the antisymmetric two-tensor squares to - 1 .  The third law of 
thermodynamics forces 0.,.,. to be positive. Hence the parameter space in 
this case is a complex half-plane, and it is convenient to choose the upper 
half-plane: H ( a ) =  {0 = o.,.y + i~.,.,., ox_ ,. > 0}, since this is where the modular 
group and its siblings conventionally act by fractional linear transforma- 
tions. With this choice of parametrization the resistivity p = Px~. + iPx.,, is 
simply p = S(o) = -1 /o .  

It seems obvious that any theory of the isotropic quantum Hall 
system, phenomenological or more fundamental, should immediately 
generalize to the anisotropic case in a simple and natural manner, since 
there is nothing sacrosanct about isotropic transport. In the anisotropic 
case we have four independent components of the transport tensor, but 
since any off-diagonal part of the symmetric (dissipative) transport tensor 
can be eliminated by rotating the coordinate system so that it is aligned 
with the currents, we can without loss of generality consider an anisotropic 
transport matrix of the form 

O" ~.~. O 'xv  O ' x x  

(-d,~,,  a., .: , ,)=(O 0~. . , . )+~ 10) (2, 

21 am grateful to J. Myrheim for this remark. 
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The dissipative (symmetric) part of the transport matrix can be reduced to 
the unit matrix by rescaling the coordinates: 

X ---I. q I/2X, 

by the anisotropy parameter 

y ~ q-1/2y (3) 

so that 

f ff.vy \ 1/2 
q = (,a-~_x) (4) 

o-~i~ = (<r,_,.~.,,,,) '/2 ~,~ (5) 

Because the antisymmetric two-tensor squares to - 1 ,  we can therefore 
always represent the physically interesting part of the anisotropic transport 
tensor by the complex number: 

a = ax,. + i(a.,..,.a.,,~.) m (6) 
The eigenvalues, i.e., two dissipative conductivities a,.,. and a>.y, must again 
be positive by the third law. Hence the parameter space in this case is a 
complex half-plane. With this choice of parametrization the resistivity 
p=p.,w+i(PxxP.,..,,) l/z is simply p = S ( a ) = - 1 / a .  The phenomenological 
ansatz is that the modular group acts linearly on this natural complex 
structure. The resulting fixed-point structure is in agreement with numeri- 
cal w o r k  (7-91 and scaling experiments 14'51 on isotropic systems. 

This anisotropic generalization has a natural and unique geometrical 
interpretation. Observe first that ( i)  provides the two-dimensional param- 
eter space H with a natural complex structure, which suggests that we ask: 
what natural geometrical structure is associated with the four-dimensional 
parameter space o f  the anisotropic system? 

In order to answer this question we recall first that the geometry of a 
parameter space and the space of fields (~b) which it parametrizes are 
intimately connected in quantum field theory. This is especially clear if the 
effective field theory is a nonlinear model: 

Left= (Tijyaboa~jiobOJ = (go.6 ~ + eo.e '~a) Oo~iObqj j (7) 

The "transport tensor" a~j splits naturally into a symmetric piece ga (in the 
isotropic case this tensor reduces to go.= ax.,.6o. ), which is the target space 
metric of the nonlinear model, and an antisymmetric piece eij= a.,ye,j ("the 
Hall conductivity"), which is a topological invariant of the nonlinear 
model, called torsion. 
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Our question can now be reformulated: what is the target space whose 
isotropic metric combines with torsion to give a modular invariant com- 
plex structure? The answer is the torus. Furthermore, the general toroidat 
model is equipped with two  natural complex structures: 

T = [Sxy + i v o l ( g ) ] / a y y  

a = a~.v + i vol(g) (8) 

sx_v) , r is the usual where the volume of the metric is vol(g) = (axxa,,y- z 1/2 
complex structure (modular) parameter of the torus (which determines its 
shape), and a is the complexified K~ihler form (which determines its size 
and torsion). The real part of the K~ihler form encodes topological (instan- 
ton) contributions to the model, which do not appear in conventional 
algebraic geometry, and therefore are of central interest in attempts to 
quantize gravity (string theory). 

Setting S~y = 0, we can write this parametrization as 

z = it/-l 
(9) 

a = o'.~y + ir/ffxx 

which exhibits rather clearly the connection with the isotropic case (17 = 1 ). 
While the virtues of this model are obvious (it is modular invariant 

and is in no way restricted to the isotropic case), it is clear from geometry 
alone that the toroidal sigma model (the linear model) cannot represent the 
low-energy degrees of freedom of the Hall system. First, the topological 
term (the "torsion"), which would encode the degrees of freedom associated 
with the transverse (Hall) conductivity, is nontrivial iff the world-sheet (the 
sample) topology is nontrivial, in obvious contradiction with experiment. 
Second, it is always Gaussian, i.e., always critical (conformal) for all values 
of all parameters, while the Hall system is only in possession of isolated 
critical points. 

We must therefore extend our search to a larger class of models, where 
the virtues but not the vices of the toroidal model are maintained. They can 
not  (generically) be sigma models, since this leads unavoidably to the linear 
model described above. 

Fortunately, there is a rather universal representation of two-dimen- 
sional models which is perfectly suited for this task, namely the Coulomb 
gas (CG) picture. Most, if not all, conformal field theories and statistical 
models can be mapped onto this system, and there is a simple modular 
invariant family whose basic degrees of freedom seem to correspond rather 
closely to the anyonic quasiparticles believed to be responsible for the 
quantum Hall effect. Remarkably, it contains the toroidal model in a 
special continuum limit. 
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The form of these models is easy to motivate in the anyonic quasipar- 
ticle picture. Although we are trying to solve a conductivity problem, in 
two dimensions this is equivalent to an electrostatics problem. Using the 
latter language, which is customary in the CG representation of ("modified 
Gaussian") conformal field theories, we build the model from "magnetic" 
(m) and "electric" (n) degrees of freedom. 

In the general anisotropic case the "charges" (currents) mi(r) and nf(r) 
at position r (possibly on a lattice, if desired) carry a spatial index i = x, y, 
and the most general conventional Coulomb interaction is 

H c =  I dr dr, {ni(r) -1 j , eij n ( r )+mi(r ) l~ lmJ(r ' ) }  G(r, r') (10) 

where the Coulomb Green function in two dimensions is G(r, r ' ) =  
( r l V  -2 I r ' ) = - ( 2 r 0 - 1 1 0 g l r - r ' l ,  and e and p are the electric and 
magnetic permittivities. In a no-loss medium they are real and symmetric, 
and they should satisfy the vacuum dispersion relation ep = 1 since they 
correspond to the (dissipative) conductivity and resistivity, which by defini- 
tion are inverse tensors. Alternatively, since the model in the continuum 
limit becomes a sigma model, we can also regard e o. as a target space metric 
go and /~ as its inverse g ~ .  Notice that the hydrodynamic vortex inter- 
action is also of this form, which fits well with the interpretation of quasi- 
particles as topological excitations of the two-dimensional "Hall liquid." 
Note also that the charges can be regarded as the charges of a pair of 
coupled Zp-symmetric spin models on dual lattices, which is where 
Cardy t~31 first discovered the symmetries discussed here. The "percolation" 
model obtained by analytic continuation in p to p ~ 1 appeared in the 
isotropic case as a candidate for the replica limit of a mesoscopic localiza- 
tion theory of anyons, c6) In the opposite continuum ("infinite replica") limit 
(p ~ o0) it becomes the toroidal sigma model. The main criteria for focus- 
ing on this class of models is that they are modular invariant in the 
isotropic case and automatically include the anisotropic generalization. 
They may turn out to be the only such models in two dimensions, but we 
shall not pursue this mathematical question here. 

The physical interpretation of H c in the quantum Hall system is that 
it represents the static properties of the quasiparticles and quasiholes which 
can be excited from a given ground state (labeled by a Hall fraction), 
provided that we can also encode their anyonic properties in a natural way. 
It is well knowia how to do this: add an Aharanov-Bohm-type interaction 

HAB = 2 i f  dr dr' mi(r) O u ( r -  r') nJ(r ') (11) 
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and recall that the "magnetic monopoles" (vortices) pick up an electric 
charge proportional to a new (topological) "theta parameter," so that the 
electric current is modified: 

ni(r ) __. ni(r ) + L mi(r ) (12) 
2~ 

Oij(r) has a complicated angular dependence in general, but is an antisym- 
metric matrix which is symmetric in the argument r. In two dimensions it 
must be related to the argument of the complex Coulomb interaction 
L o g ( r - r ' )  = log I r - r ' l  + i arg(r-r ' ) ,  but I have not sorted this out. The 
Hall conductivity is obviously to be identified with the angle 0/2n. 

The CG Hamiltonian Hcc  = HA, + Hc depends on four real parameters 
and the corresponding partition function is invariant under two copies of the 
modular group acting linearly on two unique complex combinations of these. 

Before showing .this, let us try to identify the physical origin of these 
remarkable symmetries. Hcc  is invariant under "translations" T: 0 ~ 0 + 2n 
accompanied by a redefinition of the electric current n ~ n - m. It also has 
built in a "duality" invariance S: g ~  g - l ,  which is familiar from many 
areas of physics, and which appears whenever topologically distinct degrees 
of freedom appear symmetrically (i.e., on equal footing) in the theory. 
Examples include Maxwell's equations in the presence of magnetic mono- 
poles, spin-wave-vortex (order-disorder) duality in spin models, "R ~ 1/R" 
duality in conformal field theory (string theory), etc. Since S and T do 
not commute, they generate an infinite discrete group of symmetries (the 
modular group SL(2, Z)) acting on the parameter space of the model, i.e., 
the partition function. 3 In short, if  the physics of the model is periodic in one 
parameter, a topological angle say, and self-dual in another, the coupling 
constant, say, which separately are two rather innocuous Abelian symmetries, 
then they may conspire to generate an infinite, non-Abelian discrete group. 
When this happens the parameter space geometry is so constrahTed that the 

phase and RG flow diagram is all but fixed. 
In order to make the symmetries manifest and show how the param- 

eters conspire to become two independent complex structures on parameter 
space, we rotate Hcc  to a complex basis. The basis is chosen so that the 
theory is holomorphically factorized at conformal fixed points, which is 
achieved by rotating every vector index with 

3 Note that if for some reason the period of the angular (topological) dependence is changed, 
to T 2, say, then the model will only be invariant under a congruence subgroup of the 
modular group. 
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so that (rex, my) ~ (m, th) = (mx  - imy,  m.,. + imy),  etc. After a lot of tedious 
algebra it then transpires that [the superscript s denotes the symmetric 
(dissipative) part]  

H c = - 2 ~  f dr dr' {mi(r) a } m J ( r  ') 

+ [hi(r) + ax , ,mi ( r ) ]  p ~ [ n J ( r  ') + axymJ(r')] } G(r, r') 

= f dr dr' {(zf + 1)[J(a, z) J(ff, r') + J(ff, r) J(a, r')] 

+ (z + i ) (?+ i)[J(tr, r) J(a, r') + J ( 6 ,  r) J (# ,  r ' )]  

log It'- r'l 
+ (z - i ) ( f -  i )[](a,  r) ](a,  r') + ](~, r) ](~, r ' ) ]  } ~m ; ~ m a  (14) 

where the complex parameters a and r are precisely those of the toroidal 
model [see Eq. (8)] and the currents are 

J(o', r) = n(r) + trm(r); 

J (a ,  r) = h(r)  + trth(r); 

](if ,  r) = n(r) + 6re(r) 

2(~,  ,') = n(r) + ~,~(r)  
(15) 

The peculiar looking denominator in Hc is precisely what is needed to 
make HcG invariant 4 under S transformations, as is easily verified in the 
isotropic case: 

cr ~ - 1 / a ;  n - ,  - m ;  m ~ m 

z --* - I / r ;  n ~ in; m --* im 
(16) 

The physical meaning of S(r) is simple: it is just the statement that the 
physics must be unchanged if the x and y axes are interchanged. No corre- 
spondingly simple interpretation of S(a) is available. This is in fact 
precisely where all the subtlety of the quantum Hall transport is buried. 
This symmetry has no classical analogy, unlike S(r), which is well known 
in algebraic geometry, and is generated by nonperturbative effects in the 
strongly correlated electron gas. A similar symmetry was first discovered in 
a sigma-model description of certain string models, where it is generated by 
the instanton corrections which appear in the model at short scales. The 
elucidation of the symmetries of this "complexified K~ihler cone" is the 
central nonperturbative problem in the quantum Hall effect, since it 

4 HA B should perhaps be absorbed in H c by converting log It-r'[ to Log(r-r'), so that the 
symmetries of Hcc would be even more manifest. 
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governs the phase and RG flow diagram in the space of physically relevant 
transport parameters. 

It is also easily seen that T(tr) is a symmetry 

tr--* tr + 1; n ~ n - m ;  m - * n  (17) 

but there is no corresponding symmetry involving r. This means that it is 
not quite the toroidal model which appears in the continuum limit where 
we let the number of spin components p go to infinity, but rather the 
"covering" of the torus which tesselates the upper half-plane H(Q (i.e., z 
parametrizes the Teichmfiller space of the torus). 

In summary, while the physics of these models changes dramatically as 
a function of the discrete label p, the complex structures and symmetries of 
the parameter space do not. 

It was argued in ref. 6 that the model encoding the universal conduc- 
tivity properties of the isotropic Hall system is obtained by analytic con- 
tinuation in p to the value p = 1. The physics of this is that of two coupled 
percolation models, which allowed us to deduce that the delocalization 
exponent is v =4/3,  or 7/3 if tunneling corrections should be taken into 
account, in apparent agreement with recent scaling experiments. 

It would now be highly desirable if these scaling experiments could be 
repeated for anisotropic samples, since the geometry of the models dis- 
cussed above has a remarkable experimental signature: the location of  all 
f i xed  points o f  the RG flow wilt be unchanged provided that the geometrical 
parametrization (8) is used. In practice this means that if the currents are 
aligned with the xy coordinate system we need only rescale the isotropic 
dissipative coordinate a , ,  by r/. For example, the integer delocalization 
fixed point controlling the transition between the integer Hall plateaus n and 
n + 1, which can be located rather easily using temperature-driven flows, {4} 
is predicted to lie at a~y = n + 1/2 and qtrxx = 7-~tryy = (axxtryy)~/2= 1/2. In 
the isotropic case (r/= 1) this agrees with the Princeton experiment. 
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